What Drove the GICs >10 A During the 17 March 2013 Event at Mäntsälä? A Novel Framework for Distinguishing the Magnetospheric Sources

Author:

Waghule Bhagyashree1ORCID,Knipp D. J.1ORCID,Gannon J. L.2ORCID,Billet D.3,Vines S. K.4ORCID,Goldstein J.4ORCID

Affiliation:

1. University of Colorado Boulder Boulder CO USA

2. Computational Physics Inc. Boulder CO USA

3. University of Saskatchewan Saskatoon SK Canada

4. Southwest Research Institute San Antonio TX USA

Abstract

AbstractWe combine wavelet analysis and data fusion to investigate geomagnetically induced currents (GICs) on the Mäntsälä pipeline and the associated horizontal geomagnetic field, BH, variations during the late main phase of the 17 March 2013 geomagnetic storm. The wavelet analysis decomposes the GIC and BH signals at increasing “scales” to show distinct multi‐minute spectral features around the GIC spikes. Four GIC spikes >10 A occurred while the pipeline was in the dusk sector—the first sine‐wave‐like spike at ∼16 UT was “compound.” It was followed by three “self‐similar” spikes 2 hr later. The contemporaneous multi‐resolution observations from ground‐(magnetometer, SuperMAG, SuperDARN), and space‐based (AMPERE, Two Wide‐Angle Imaging Neutral‐atom Spectrometers) platforms capture multi‐scale activity to reveal two magnetospheric modes causing the spikes. The GIC at ∼16 UT occurred in two parts with the negative spike associated with a transient sub‐auroral eastward electrojet that closed a developing partial ring current loop, whereas the positive spike developed with the arrival of the associated mesoscale flow‐channel in the auroral zone. The three spikes between 18 and 19 UT were due to bursty bulk flows (BBFs). We attribute all spikes to flow‐channel injections (substorms) of varying scales. We use previously published MHD simulations of the event to substantiate our conclusions, given the dearth of timely in‐situ satellite observations. Our results show that multi‐scale magnetosphere‐ionosphere activity that drives GICs can be understood using multi‐resolution analysis. This new framework of combining wavelet analysis with multi‐platform observations opens a research avenue for GIC investigations and other space weather impacts.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3