Measuring Bedload Motion Time at Second Resolution Using Benford's Law on Acoustic Data

Author:

Yang Ci‐Jian1ORCID,Turowski Jens M.2ORCID,Zhou Qi23ORCID,Nativ Ron24ORCID,Tang Hui2ORCID,Chang Jui‐Ming5ORCID,Chen Wen‐Sheng6

Affiliation:

1. Department of Geography National Taiwan University Taipei Taiwan

2. Helmholtzzentrum Potsdam GFZ German Research Center for Geosciences Potsdam Germany

3. Institute of Geosciences University of Potsdam Potsdam Germany

4. Department of Earth and Environmental Sciences Ben‐Gurion University of the Negev Be'er Sheva Israel

5. Department of Civil Engineering National Yang Ming Chiao Tung University Hsinchu Taiwan

6. Center for General Education National Dong Hwa University Hualien Taiwan

Abstract

AbstractBedload transport is a natural process that strongly affects the Earth's surface system. An important component of quantifying bedload transport flux and establishing early warning systems is the identification of the onset of bedload motion. Bedload transport can be monitored with high temporal resolution using passive acoustic methods, for example, hydrophones. Yet, an efficient method for identifying the onset of bedload transport from long‐term continuous acoustic data is still lacking. Benford's Law defines a probability distribution of the first‐digit of data sets and has been used to identify anomalies. Here, we apply Benford's law to continuous acoustic recordings from Baiyang hydrometric station, a tributary of Liwu River, Taroko National Park, Taiwan at the frequency of 32 kHz from stationary hydrophones deployed for 3 years since 2019. We construct a workflow to parse sound combinations of bedload transportation and analyze them in the context of hydrometric sensing constraining the onset, and recession of bedload transport. We identified three separate sound classes in the data related to the noise produced by the motion of pebbles, water flow, and air. We identify two bedload transport events that lasted 17 and 45 hr, respectively, covering about 0.35% of the total recorded time. The workflow could be transferred to other different catchments, events, or data sets. Due to the influence of instrument and background noise on the regularity of the residuals of the first‐digit, we recommend identifying the first‐digit distribution of the background noise and ruling it out before implementing this workflow.

Funder

National Science and Technology Council

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benford's Law as Debris Flow Detector in Seismic Signals;Journal of Geophysical Research: Earth Surface;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3