Advancements in Individual Tree Detection and Forest Structural Attributes Estimation From LiDAR Data: MSITD and SAFER Approaches

Author:

Fallah Mohammad1,Aghighi Hossein1ORCID,Matkan Aliakbar1

Affiliation:

1. Center for Remote Sensing and Geographic Information System Research, Faculty of Earth Sciences, Shahid Beheshti University Tehran Iran

Abstract

AbstractCurrently, the information on the structural attributes of forests, such as the diameter at breast height (DBH) and the aboveground biomass (AGB), is being used widely in various disciplines. In this study, we first proposed a novel tree detection algorithm called multi‐scale individual tree detection (MSITD) algorithm, which combines the strengths of raster‐based and point‐based approaches in order to detect individual trees from LiDAR data accurately. After tree detection, the DBH and AGB attributes were estimated using the ground control data and metrics extracted from LiDAR data, adopting the safe semi‐supervised regression (SAFER) algorithm specifically designed for addressing regression problems with limited sample data. The performances of these algorithms were evaluated within a 10‐fold nested cross‐validation approach, utilizing the LiDAR data available in the NEWFOR project. The evaluation of the obtained results revealed that both the MSITD algorithm and the SAFER algorithm demonstrate substantial superiority compared to the benchmark algorithms in tree detection, especially for the understory trees, and forest structural attributes estimation, respectively. On average, the MSITD algorithm exhibited a 13% better performance in terms of extraction rate and an 11% better performance in terms of matching rate compared to the benchmark individual tree detection algorithms. For forest structural attributes estimation, the SAFER algorithm provided superior predictions compared to the benchmark ML algorithms, with the average RMSE of 3.38 cm, MAE of 2.84 cm, and R2 of 0.59 for DBH and the average RMSE of 75.79 kg, MAE of 70.02 kg, and R2 of 0.56 for AGB.

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3