Efficient Thermoelectric Conversion of Sulfide Chimneys in Submarine Volcanic Systems

Author:

Jia Haoning12,Zhu Jiaqi12,Li Yanzhang12,Li Jiwei3,Ye Huan12,Du Yimei12,Hua Tianci12,Zhuang Ziyi12,Lu Anhuai12,Ding Hongrui12,Lai Yong1,Wang Changqiu12,Li Yan12ORCID

Affiliation:

1. Key Laboratory of Orogenic Belts and Crustal Evolution School of Earth and Space Sciences Peking University Beijing China

2. Beijing Key Laboratory of Mineral Environmental Function School of Earth and Space Sciences Peking University Beijing China

3. Institute of Deep Sea Science and Engineering Chinese Academy of Sciences Sanya China

Abstract

AbstractSubmarine volcanos are the most active areas in the deep sea, but the environmental consequences of frequent volcanic activity on the geophysical fields and biogeochemical processes near hydrothermal chimneys have not been fully understood yet. In particular, how continuous high‐flux thermal energy, the most typical form of energy in active submarine volcanic systems, affects electron transport and geoelectric field remains unknown. This study provides the first evidence that thermal energy can be efficiently converted to electrical energy at an extremely small spatial scale of the submarine black chimneys. The Seebeck coefficient of sulfide chimneys can reach more than 200 μV/K, with high electrical conductivity of 104 S/m and low thermal conductivity of 1.0 W/(m·K) within 300–700 K. A maximal potential gradient of 300 mV/cm under a temperature difference of 300–700 K can be generated by the thermoelectric conversion of sulfide chimneys, with a maximum energy converting efficiency up to 1%. The thermoelectric conversion effect of a global‐scale submarine volcanos could enable electroactive bacteria to fix appromaxiately 105–106 tons of carbon per year. In addition, the thermal‐electrochemical experiments indicated sulfides underwent rapid oxidation under thermoelectric effects, which may help explain the intense oxidative weathering of sulfides in some anoxic deep‐sea hydrothermal zones.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3