Compositional Characterization of Glassy Volcanic Material From VSWIR and MIR Spectra Using Partial Least Squares Regression Models

Author:

Leight C. J.1ORCID,Ytsma C.2ORCID,McCanta M. C.1ORCID,Dyar M. D.34ORCID,Glotch T. D.5ORCID

Affiliation:

1. Department of Earth and Planetary Sciences University of Tennessee Knoxville TN USA

2. Cai Consulting Glasgow Scotland

3. Department of Astronomy Mount Holyoke College South Hadley MA USA

4. Planetary Science Institute Tucson AZ USA

5. Department of Geosciences Stony Brook University Stony Brook NY USA

Abstract

AbstractThe glass phase in volcanic rocks presents a challenge to obtaining compositional data from visible and short‐wave‐infrared (VSWIR) and mid‐infrared (MIR) spectral data of remote surfaces due to its amorphous structure and variable composition. Nonetheless, glass is a common phase in volcanic materials because it forms via the rapid quench of magma and can constitute up to the entirety of a volcanic deposit. Use of partial least squares regression (PLS) to predict glass contents creates models that are insensitive to viewing geometry and sample conditions such as grain size and spectrally inactive compositional variables, enhancing the ability to detect glasses with remote sensing. PLS models are used here to predict crystallinity and oxide composition of samples from VSWIR and MIR spectral data using training spectra from natural volcanic rocks and geologically relevant synthetic samples. Three spectral resolutions of VSWIR and MIR spectra (1, 10, and 100 nm/band, and 1.9, 19, and 190 cm−1/band, respectively) were tested to assess the effects of collection configuration on different spectrometers. PLS models trained on 1 nm and 1.9 cm−1 data sets have the lowest uncertainties of glass modal abundance for VSWIR and MIR, respectively. MIR models predicting sample wt. % SiO2 and FeO, and VSWIR models of wt. % FeO provide accurate estimates (e.g., RMSE‐P of 3.4 wt. % FeO) at all spectral resolutions. Results are based on training data sets skewed to mafic compositions, which affects model accuracies.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3