The Origin and Nature of Magnetic Particles From Soils and Sediments Constrained by Hydrodynamics and Geochemistry Around a Tropical Lagoon System

Author:

Zhang Xinming1ORCID,Long Xiaoyong1ORCID,Xiong Chunlin1,Liu Chuan1,Song Yanwei2ORCID

Affiliation:

1. Key Laboratory of Karst Environment School of Geographical Sciences Southwest University Chongqing China

2. Haikou Marine Geological Center China Geological Survey Haikou China

Abstract

AbstractMagnetic iron oxides are commonly enriched in soils and sediments on Earth's surface. Magnetic properties are widely employed in soil taxonomy, sediment tracing and paleoclimate reconstruction as indicators of associated pedogenic and depositional processes. However, in coastal regions, frequent shifts in pedogenesis and diagenesis accompanied by changes in hydrodynamic and geochemical conditions from land to sea can influence the formation and preservation of magnetic particles in sediment sequences. To discern the origin and nature of magnetic particles driven by these processes, we systematically examined soils and sediments around a tropical lagoon that has been closing for two hundred years. We found that the finest superparamagnetic particles are enriched along with hematite from inland soils with high‐Fe and high‐Al backgrounds, which was driven by pedogenesis. Single‐domain ferrimagnetic particles are enriched along with amorphous iron oxides in the lagoon with high‐Mg and high‐Mn backgrounds, which was driven by early diagenesis in quiet and reducing depositional environments. Coarse titanomagnetite particles are strongly enriched in inshore sediments with high‐Si and high‐Ti backgrounds, which was driven by seawater elutriation. However, magnetic particles in barrier bar soils have mixed features depending on the neighboring environment. Identifying magnetic particles derived from different soils and sediments in tropical coastal regions can assist in tropical coastal paleoclimate and paleoenvironment reconstruction on the basis of magnetic properties along coastal sediment sequences.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Chongqing Municipality

China Geological Survey, Ministry of Natural Resources

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3