Localization of Deformation on Faults Driven by Fluids During the L’Aquila 2009 Earthquake

Author:

Fonzetti Rossella12ORCID,Valoroso Luisa1ORCID,De Gori Pasquale1ORCID,Chiarabba Claudio1ORCID

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia (INGV) Rome Italy

2. Università degli Studi Roma Tre Rome Italy

Abstract

AbstractCoseismic rupture and aftershock development on a fault plane are complex and heterogeneous processes. The Mw 6.1 L’Aquila 2009 normal faulting earthquake is a perfect case to explore how fault geometry and rheology influence the rupture process and aftershocks distribution. In this study, we use for the first time a dense set of earthquake data to obtain enhanced images of the causative normal fault structure to the kilometer scale. The hypocenter of the emergent onset of the mainshock took place within a low Vp/Vs volume, while the large coseismic slip occurred a few kilometers above, as the rupture propagated through a high Vp and high Vp/Vs fluid‐filled rock volume. The increase of Vp/Vs in the fault hanging wall during the sequence suggests a strong dehydration in the earthquake asperity, with an upward fluid pressure migration along the fault toward the host rock volume. We propose that the localization of deformation on the fault plane is favored by high fluid pressure, while the spreading of aftershocks on a wide volume around the fault is driven by the depletion of fluids from the slipped portion of the fault plane and migration to small segments within the fault host rocks.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3