Affiliation:
1. University of Oslo Oslo Norway
2. Kjeller Vindteknikk Norconsult Lillestrøm Norway
3. Center for International Climate Research (CICERO) Oslo Norway
4. Norwegian Meteorological Institute Oslo Norway
Abstract
AbstractClimate projections in the North Atlantic region suffer from great uncertainties, and projections of precipitation are given with a large spread. Some of this uncertainty is related to projections of the North Atlantic warming hole (NAWH). The Community Earth System Model version 2 (CESM2) projects a relatively strong and extensive NAWH, with future sea surface cooling extending to Northern Scandinavia. This study investigates the relatively large winter precipitation decrease projected by CESM2 in the northeastern North Atlantic region, reinforced in a regional model. Three future scenarios from CESM2 are dynamically downscaled with the Weather Research and Forecast model. A methodology to separate convective and orographic from stratiform precipitation is applied to explore the physical mechanisms. Changes in stratiform precipitation closely relate to storm‐track changes, which varies between the scenarios. Convective precipitation decreases by up to 50% over the Norwegian Sea at the end of the century, which is robust across the scenarios. This is explained by the underlying reduced sea surface temperatures of the NAWH, leading to reduced evaporation and reduced convective activity and intensity. The orographic precipitation maximum over the Scandinavian mountains is shifted upstream, likely affected by increased static stability and flow blocking, which also relates to the NAWH. This shift is possibly also explained by more frequent rain versus snow, as well as reduced cross‐barrier wind speeds. This study contributes to highlight the importance of focusing future research efforts on the NAWH, in order to constrain future climate projections in this region.
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献