Future Winter Precipitation Decreases Associated With the North Atlantic Warming Hole and Reduced Convection

Author:

Iversen Emilie C.12ORCID,Hodnebrog Øivind3ORCID,Seland Graff Lise4ORCID,Nygaard Bjørn Egil2,Iversen Trond14ORCID

Affiliation:

1. University of Oslo Oslo Norway

2. Kjeller Vindteknikk Norconsult Lillestrøm Norway

3. Center for International Climate Research (CICERO) Oslo Norway

4. Norwegian Meteorological Institute Oslo Norway

Abstract

AbstractClimate projections in the North Atlantic region suffer from great uncertainties, and projections of precipitation are given with a large spread. Some of this uncertainty is related to projections of the North Atlantic warming hole (NAWH). The Community Earth System Model version 2 (CESM2) projects a relatively strong and extensive NAWH, with future sea surface cooling extending to Northern Scandinavia. This study investigates the relatively large winter precipitation decrease projected by CESM2 in the northeastern North Atlantic region, reinforced in a regional model. Three future scenarios from CESM2 are dynamically downscaled with the Weather Research and Forecast model. A methodology to separate convective and orographic from stratiform precipitation is applied to explore the physical mechanisms. Changes in stratiform precipitation closely relate to storm‐track changes, which varies between the scenarios. Convective precipitation decreases by up to 50% over the Norwegian Sea at the end of the century, which is robust across the scenarios. This is explained by the underlying reduced sea surface temperatures of the NAWH, leading to reduced evaporation and reduced convective activity and intensity. The orographic precipitation maximum over the Scandinavian mountains is shifted upstream, likely affected by increased static stability and flow blocking, which also relates to the NAWH. This shift is possibly also explained by more frequent rain versus snow, as well as reduced cross‐barrier wind speeds. This study contributes to highlight the importance of focusing future research efforts on the NAWH, in order to constrain future climate projections in this region.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3