Non‐Lightning‐Generated Whistler Waves in Near‐Venus Space

Author:

George H.1ORCID,Malaspina D. M.12ORCID,Goodrich K.3ORCID,Ma Y.4ORCID,Ramstad R.1ORCID,Conner D.3,Bale S. D.56ORCID,Curry S.5

Affiliation:

1. Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA

2. Astrophysical and Planetary Sciences Department University of Colorado Boulder Boulder CO USA

3. Department of Physics and Astronomy West Virginia University Morgantown WV USA

4. Department of Earth Planetary and Space Sciences University of California, Los Angeles Los Angeles CA USA

5. Space Sciences Laboratory University of California, Berkeley Berkeley CA USA

6. Physics Department University of California, Berkeley Berkeley CA USA

Abstract

AbstractThe occurrence of Venusian lighting has been debated for decades. Terrestrial lightning generates whistler waves, and many whistlers have been observed in Venus's ionosphere and induced magnetosphere. Venusian lightning occurrence rates derived from these whistler observations are relatively high. However, optical flashes on Venus are exceedingly rare and Venus encounters by multiple spacecrafts have not detected lightning. These non‐detections and rare optical observations are consistent with low Venusian lightning occurrence rates, which is incompatible with the high whistler‐derived rates. We present observations of whistlers during a Parker Solar Probe Venus gravity assist and eliminate lightning as a possible source. These waves are observed at an altitude of 0.39 Venus radii on Venus' nightside with planetward propagation and are simultaneous with Langmuir waves. This provides a mechanism for whistler generation near Venus that does not require lightning, and suggests that whistler‐based lightning occurrence rates may be overestimated.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3