Affiliation:
1. State Key Laboratory of Hydraulics and Mountain River Engineering College of Water Resource and Hydropower Sichuan University Chengdu China
2. Water Resources Department School of Engineering Federal University of Lavras Lavras Brazil
Abstract
AbstractStream gauging stations provide critical streamflow measurements for hydrological applications; however, they may not accurately capture total catchment discharge due to unmonitored regional groundwater flow. Here, we evaluate the effectiveness of streamflow data from gauging stations worldwide to represent total catchment discharge through a modified hydrological model that includes baseflow signatures to constrain groundwater flow processes. We find that approximately 70% of gauging stations present biased estimations of total catchment discharge (bias >10%). This result implies that hydrology‐related processes may not be fully understood, and misleading conclusions may be drawn owing to the low streamflow measurement effectiveness. By influencing subsurface hydrological processes, catchment factors, including catchment area, topography, climate, and geological features, are linked to the effectiveness of streamflow measurements. Our findings highlight the importance of accurate streamflow measurement effectiveness for obtaining a reliable understanding of catchment hydrological processes to support sustainable water resource management.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献