Most Global Gauging Stations Present Biased Estimations of Total Catchment Discharge

Author:

Huang Peng1ORCID,Wang Genxu1ORCID,Guo Li1,Mello Carlos R.2,Li Kai1,Ma Jiapei1,Sun Shouqin1ORCID

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering College of Water Resource and Hydropower Sichuan University Chengdu China

2. Water Resources Department School of Engineering Federal University of Lavras Lavras Brazil

Abstract

AbstractStream gauging stations provide critical streamflow measurements for hydrological applications; however, they may not accurately capture total catchment discharge due to unmonitored regional groundwater flow. Here, we evaluate the effectiveness of streamflow data from gauging stations worldwide to represent total catchment discharge through a modified hydrological model that includes baseflow signatures to constrain groundwater flow processes. We find that approximately 70% of gauging stations present biased estimations of total catchment discharge (bias >10%). This result implies that hydrology‐related processes may not be fully understood, and misleading conclusions may be drawn owing to the low streamflow measurement effectiveness. By influencing subsurface hydrological processes, catchment factors, including catchment area, topography, climate, and geological features, are linked to the effectiveness of streamflow measurements. Our findings highlight the importance of accurate streamflow measurement effectiveness for obtaining a reliable understanding of catchment hydrological processes to support sustainable water resource management.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3