Prediction of Atmospheric Profiles With Machine Learning Using the Signature Method

Author:

Fujita M.1ORCID,Sugiura N.1ORCID,Kouketsu S.1ORCID

Affiliation:

1. Japan Agency for Marine‐Earth Science and Technology Yokosuka Japan

Abstract

AbstractAn array of atmospheric profile observations consists of three‐dimensional vectors representing pressure, temperature, and humidity, with each profile forming a continuous curve in this three‐dimensional space. In this paper, the Signature method, which can quantify a profile's curve, was adopted for the atmospheric profiles, and the accuracy of profile representations was investigated. The description of profiles by the signature was confirmed with adequate accuracy. The machine‐learning‐based model, developed using the signature, exhibited a high level of annual accuracy with minimal absolute mean differences in temperature and water vapor mixing ratio (<2.0 K or g kg−1). Notably, the model successfully captured the vertical structure and atmospheric instability, encompassing drastic variations in water vapor and temperature, even during intense rainfall. These results indicate the Signature method can comprehensively describe the vertical profile with information on how ordered values are correlated. This concept would potentially improve the representation of the atmospheric vertical structure.

Funder

Fusion Oriented REsearch for disruptive Science and Technology

Japan Society for the Promotion of Science

AIP Network Laboratory

Publisher

American Geophysical Union (AGU)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3