Thermal and Physical Properties of Barrovian Metamorphic Sequence Rocks in the Ailao Shan‐Red River Shear Zone, and Implications for Crustal Channel Flow

Author:

Ji Lei12ORCID,Liu Fulai12ORCID,Palin Richard3ORCID,Wang Fang12,Sun Zaibo4

Affiliation:

1. Chinese Academy of Geological Sciences Beijing China

2. Key Laboratory of Deep‐Earth Dynamics of Ministry of Natural Resources Beijing China

3. Department of Earth Sciences University of Oxford Oxford UK

4. Yunnan Institute of Geological Survey Kunming China

Abstract

AbstractThe collisional history between Greater India and the Eurasian plate has been well constrained by the study of exhumed Barrovian metamorphic sequence (BMS) rocks in the Himalayan Range. However, in the southeastern Tibetan Plateau, the collisional records have been obscured by intense, regional‐scale strike‐slip overprinting and recrystallization. Here, in BMS rocks from the Ailao Shan–Red River shear zone (ARSZ), we report the first discovery of a >250 km long, high‐pressure (high‐P) granulite belt (>1.0 GPa), identified by the presence of relict kyanite and associated decompression reaction textures. Petrological phase equilibrium modeling showed that exposed micaschists in the region represent exhumed middle crust (20–25 km, 600–670°C), while the high‐P granulite rocks are remnants of thickened lower crust (45–55 km, 800–850°C). This indicates that the northeast edge of the ARSZ experienced an additional ∼25 km of uplift and exhumation compared to the southwest side, facilitated by brittle thrusting/imbrication along the Ailao Shan fault (micaschists) and ductile extrusion along the Red River fault (granulite). Geochronological study shows that the upper portion of the BMS preserves older metamorphic ages (52–34 Ma) than the lower portion (32–29 Ma), which was attributed to spatial variation in cooling rates. Using calculated P–T–t–d paths, we also examined variation in density and seismic wave speeds for BMS in the ARSZ. Our data correlate with fieldwork conducted elsewhere within the Himalayan Range indicating that the kyanite to sillimanite transition zone may serve as a “cap” for the horizontal migration of melt within the lower crust.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3