A Granitic Mylonite Is Strongest Parallel to Lineation in a High‐Temperature Plastic Field

Author:

Shao Tongbin12ORCID,Wang Xiaoning13,Li Jianfeng14,Zhou Yongsheng2ORCID,Song Maoshuang14ORCID

Affiliation:

1. State Key Laboratory of Isotope Geochemistry Guangzhou Institute of Geochemistry Chinese Academy of Sciences Guangzhou China

2. State Key Laboratory of Earthquake Dynamics Institute of Geology China Earthquake Administration Beijing China

3. School of Mining Engineering Heilongjiang University of Science and Technology Harbin China

4. CAS Center for Excellence in Deep Earth Science Guangzhou China

Abstract

AbstractThe effects of preexisting fabrics on the flow laws and anisotropic deformation of rocks require further study. We conducted triaxial compression experiments on a granitic mylonite parallel to lineation (X), perpendicular to lineation and parallel to foliation (Y), and perpendicular to foliation (Z) under a pressure of 300 MPa, temperatures of 800–1,000°C, and strain rates of ∼2.5 × 10−6–10−4 s−1 using a Paterson gas‐medium apparatus. The low stress exponent (n = 1.9–5.8), high activation energy (Q = 325–802 kJ/mol), and macrostructures (distributed for most samples) and microstructures (such as kinked, folded and elongated biotite, elongated quartz and feldspar, microcracks within quartz and feldspar, and melt wetting and dissolution of quartz and feldspar) suggest that the deformation is dominated by dislocation creep, along with brittle regime at ≤∼850°C and likely diffusion creep at ≥900°C. Dehydration melting of biotite causes more obvious melt wetting of quartz and feldspar boundaries, lower n values at ≥950°C, and the maximum changes in n and Q along the Z‐direction, since the biotite alignment defines the foliation. Under the same conditions, the X‐direction samples consistently display the greatest strengths, which would have been for the Z‐direction samples as reported previously, and most obvious deformation localization, mainly due to the alignment of the elongated quartz and feldspar along this direction. Microcracks always occur in quartz but are tensile when compressed perpendicular to the foliation plane and compressively sheared when shortened parallel to the foliation plane. These tensile microcracks further weaken the rock samples with axes perpendicular to foliation.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3