Affiliation:
1. Department of Earth Sciences University of Gothenburg Gothenburg Sweden
2. Department of Marine Sciences University of Gothenburg Gothenburg Sweden
Abstract
AbstractSea ice production within polynyas, an outcome of the atmosphere‐ice‐ocean interaction, is a major source of dense water and hence key to the global overturning circulation, but is poorly quantified over open‐ocean polynyas. Using the two recent extensive open‐ocean polynyas within the wider Maud Rise region of the Weddell Sea in 2016 and 2017, we here explore the sea ice energy budget and estimate their sea ice production based on satellite retrievals, in‐situ hydrographic observations and the Japanese 55‐year Reanalysis. We find that the oceanic heat flux amounts to 36.1 and 30.7 W m−2 within the 2016 and 2017 polynyas, respectively. Especially the 2017 open‐ocean polynya produced nearly 200 km3 of new sea ice, which is comparable to the production in the largest Antarctic coastal polynyas. Finally, we determine that ice production is highly correlated with and sensitive to skin temperature and wind speed, which affect the turbulent fluxes. It is also strongly sensitive to uncertainties in the sea ice concentration and 1,000 hPa temperature, which all urgently need to be better monitored at high latitudes. Lastly, more process‐oriented campaigns are required to further elucidate the role of open‐ocean polynya on the local and global ocean circulations.
Funder
Swedish National Space Agency
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献