Scaling the Bubble Penetration Depth in the Ocean

Author:

Cifuentes‐Lorenzen A.1ORCID,Zappa C. J.2ORCID,Randolph K.1,Edson J. B.3ORCID

Affiliation:

1. Department of Marine Sciences University of Connecticut Groton CT USA

2. Ocean and Climate Physics Lamont‐Doherty Earth Observatory Columbia University New York NY USA

3. Applied Ocean Physics & Engineering Woods Hole Oceanographic Institution Woods Hole MA USA

Abstract

AbstractBubble plume penetration depths have been identified as a key parameter linking subsurface turbulent kinetic energy (TKE) dissipation rates and whitecaps. From data collected in the Atlantic sector of the Southern Ocean, nominally 50°S 40°W, bubble plume penetration depths were estimated from Acoustic Doppler Current Profiler measurements of the acoustic backscatter anomaly. Bubble presence at depth was corroborated using independent measurements of optical scattering. Here, an effective wavelength, observations of significant wave height and atmospheric forcing were used to scale penetration depths of breaking waves under open ocean conditions. The parameterization was developed assuming a correlation between the observed penetration depth and an estimate of the TKE dissipation rate enhancement under breaking waves. The effective wavelength was defined from the effective phase speed based on a momentum and energy balance across the atmospheric wave boundary layer and was considered to be the largest actively wind‐coupled wave and representative of large‐scale breaking for wave ages ranging from 15 to 35 (i.e., 15 ≤ 〈cp/u*〉 ≤ 35). This yields a dimensional penetration depth parameterization in terms of inverse wave age and the length scales under consideration. The parameterization captures the bubble plume penetration depth with stronger forcing leading to deeper injections, reaching up to 9 m. Both length scales are effective at defining the depth of a wave‐affected layer in terms of bubble presence with the effective wavelength better collapsing the data under mixed conditions with deeper plumes associated to larger fractional whitecap coverage.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3