Surface Albedo Feedback, Seasonal Heat Storage and Meridional Heat Transport Determine the Seasonality of Recent Warming in Antarctica

Author:

Dai Haijin12ORCID

Affiliation:

1. College of Meteorology and Oceanography National University of Defense Technology Changsha China

2. High Impact Weather Key Laboratory of CMA Changsha China

Abstract

AbstractThe reanalysis data suggest that recent surface warming over Antarctica start in 2016. In this study, using reanalysis data and numerical simulations, I attempt to determine the important mechanisms accounting for seasonal surface warming in Antarctica. The results suggested that seasonal surface warming in Antarctica is mainly determined by the surface energy budget over the Antarctic via horizontal heat advection. The surface energy budget anomaly over the Antarctic, which is mainly determined by anomalous solar radiation absorption, anomalous ocean heat content, and anomalous meridional atmospheric heat transport (AHT), is triggered by Antarctic sea‐ice loss and thus determines the observational seasonality of recent warming in Antarctica via surface horizontal heat advection. In austral summer (December–January–February), additional solar radiation absorption induced by sea‐ice loss and additional AHT from lower latitudes increase the energy budget over the Antarctic. Surface warming, more longwave radiation, and additional energy stored in the upper (deeper) ocean for short (long) time periods explain the additional energy sinks. During austral autumn‐winter (March–August), additional seasonal heat storage (SHS; mainly stored in the upper ocean) is released to the atmosphere and warms the surface. Although the AHT anomaly contributes similarly to the solar radiation absorption/SHS anomaly during April–August, the poleward AHT largely decreased in June due to the weaker eddy activity induced by strong warming at Southern Hemisphere midlatitudes, which counteracts the additional SHS release and cools the Antarctic(a).

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3