The Roles of Tidal Marshes in the Estuarine Biochemical Processes: A Numerical Modeling Study

Author:

Cai Xun12ORCID,Shen Jian1ORCID,Zhang Yinglong J.1ORCID,Qin Qubin1ORCID,Linker Lewis3

Affiliation:

1. Virginia Institute of Marine Science William & Mary Gloucester Point VA USA

2. ORISE Research Participation Program at EPA Chesapeake Bay Program Office Annapolis MD USA

3. U.S. Environmental Protection Agency Chesapeake Bay Program Office Annapolis MD USA

Abstract

AbstractObservations suggest that the existence of tidal marsh can alter the oxygen and nutrient dynamics in adjacent water bodies, but assessing the impacts of large tidal marshes on an estuary is challenging. In this study, we use a modeling approach to investigate the roles of tidal marshes on the estuarine biochemical processes. The marsh model, which simulates the ecological functions of marshes at seasonal and annual time‐scales, is embedded inside an unstructured‐grid three‐dimensional hydrodynamic and eutrophication model (SCHISM‐ICM). This modeling system simulates the growth and metabolism of the tidal marshes and links biological processes to nutrient dynamics in the water column and sediment. This model dynamically simulates nutrient recycling and physical transport of the materials between marshes and open water through wetting‐drying processes. This coupled model system is validated and successfully applied to the York River Estuary. Model results suggest that tidal marshes influence the local diurnal dissolved oxygen (DO) cycle by exporting dissolved organic carbon and high sediment oxygen demand in the marsh system through the tidal exchange. The high deposition rates of organics and diurnal DO cycle enhance the sediment release of phosphorus. On the other hand, marshes tend to decrease dissolved inorganic nitrogen in the water column by settling particulate nutrients and enhancing the denitrification process. The study demonstrates that tidal marshes exert substantial impacts on the estuarine biochemical processes. The developed tidal marsh model enhances eutrophication modeling and advances the understanding of the feedback effects between marsh biogeochemistry and estuarine eutrophication processes on a systemic scale.

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sea‐Level Rise Impacts on Tidal Marshes and Estuarine Biogeochemical Processes;Journal of Geophysical Research: Biogeosciences;2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3