Dissolved Iron Concentration and the Solubility Inferred by Humic‐Like Fluorescent Dissolved Organic Matter in the Intermediate Water in the North Pacific Including the Marginal Seas

Author:

Yamashita Youhei1ORCID,Nishioka Jun2ORCID

Affiliation:

1. Faculty of Environmental and Earth Science Hokkaido University Sapporo Japan

2. Pan‐Okhotsk Research Center Institute of Low Temperature Science Hokkaido University Sapporo Japan

Abstract

AbstractThe marginal seas have been found to be important external sources of dissolved iron (Fe) in the North Pacific through circulation of intermediate water. Here, we show comprehensive spatial distributions of dissolved Fe concentrations and Fe(III) solubilities inferred from humic‐like fluorescent dissolved organic matter (FDOMH) over the North Pacific, including the marginal seas, the Sea of Okhotsk, and the Bering Sea. FDOMH was used as a proxy of chemical speciation of dissolved Fe in the intermediate and deep waters where liner relationships were previously observed between FDOMH and Fe(III) solubility. When dissolved Fe concentration exceeds Fe(III) solubility, Fe(III) solubility is assumed to be equivalent to concentration of FDOMH‐Fe complexes, and excess dissolved Fe concentration above the Fe(III) solubility is assumed to be colloidal Fe which is not complexed with FDOMH. In the intermediate water, the dissolved Fe concentration exceeded the Fe(III) solubility in the marginal seas, while excess Fe(III) solubility was evident downstream of the intermediate water circulation, suggesting that the major dissolved Fe chemical form derived from shelf and slope sediments in the marginal seas changed from colloidal Fe to FDOMH‐Fe complexes. With the previous findings, namely the dominance of labile particulate Fe in total Fe in the intermediate water of the Sea of Okhotsk and the Bering Sea, we hypothesized that the average size of sediment‐derived Fe decreases during transportation by intermediate water, most likely due to reversible scavenging with the highest removal rate for labile particulate Fe and the lowest removal rate for FDOMH‐Fe complexes.

Funder

Japan Society for the Promotion of Science

Publisher

American Geophysical Union (AGU)

Subject

Paleontology,Atmospheric Science,Soil Science,Water Science and Technology,Ecology,Aquatic Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3