Local and Remote Storm Surge Contributions to Total Water Levels in the Gulf of St. Lawrence During Hurricane Fiona

Author:

Mulligan R. P.12ORCID,Swatridge L.12ORCID,Cantelon J. A.3ORCID,Kurylyk B. L.3ORCID,George E.4,Houser C.5

Affiliation:

1. Department of Civil Engineering Queen's University Kingston ON Canada

2. Beaty Water Research Centre Queen's University Kingston ON Canada

3. Department of Civil and Resource Engineering Dalhousie University Halifax NS Canada

4. School of the Environment University of Windsor Windsor ON Canada

5. Faculty of Science University of Waterloo Waterloo ON Canada

Abstract

AbstractPost‐tropical Hurricane Fiona generated a large storm surge that resulted in pronounced flooding and coastal erosion in Atlantic Canada in September 2022. In this study we apply a regional barotropic storm surge model in the Gulf of St. Lawrence, a semi‐enclosed sea, to demonstrate a method of evaluating different contributions to the total water levels. These include the surge generated over the ocean, the surge generated by the cyclonic winds over the gulf, and the tides. The results indicate that the highest storm surge occurred in the southeastern region, a combination of locally and remotely generated components. The surge that entered from the ocean was greater than the surge generated over the gulf; however, these were not in phase. To investigate the case where the local and remote surges are coincident, we shift the wind field relative to the timing of the boundary conditions and find the near “perfect storm” with significantly higher storm surge elevations. These findings highlight the importance of basin morphology and storm conditions in controlling the interactions of surge components, and this approach can be applied to simulate a range of storm‐driven hazard outcomes for future extreme events.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada First Research Excellence Fund

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3