Affiliation:
1. Coastal Risks and Sea‐Level Rise Research Group Department of Geography Kiel University Kiel Germany
2. Coastal Protection and Coastal Dynamics Faculty of Agricultural and Environmental Sciences University of Rostock Rostock Germany
3. Global Climate Forum Berlin Germany
Abstract
AbstractFlood characteristics caused by extreme sea level (ESL) events depend largely on the magnitude of peak water levels (WLs) and their temporal evolution. However, coastal flood risk is generally assessed based on only a limited number of potential peak WLs and a selection of past events or a design hydrograph. We address this gap and systematically estimate (a) spatial annual and (b) event‐based flood probabilities by comprehensively accounting for both a wide range of peak ESLs and their temporal evolution, herein referred to as hydrograph intensity. We simulate flooding at the German Baltic Sea coast with the hydrodynamic model Delft3D. We produce probabilistic flood maps, which detail flood exposed areas together with annual probability of flooding. Additionally, we show how the flood extent changes, when accounting for upper, median, and lower quantiles of hydrograph intensities. Our results demonstrate that the relevance of the intensity is site and ESL dependent. While flood extents of some ESLs of the upper and lower intensity bounds indicate no differences, others differ by up to 45%. Further, we consider two ESLs (2.24 and 2.55 m) and simulate 100 intensities for each. Compared to intensity quantiles, this results in flood extents of up to 60% difference. Hence, we find that quantiles of intensity do not cover the full range when addressing uncertainty due to hydrograph variability. We, therefore, recommend accounting for a wide range of hydrograph intensities in addition to using a wide range of ESL in future flood risk assessments.
Funder
Deutsche Forschungsgemeinschaft
Publisher
American Geophysical Union (AGU)