Development of <i>in silico</i> prediction models for drug-induced liver malignant tumors based on the activity of molecular initiating events: Biologically interpretable features
-
Published:2022
Issue:3
Volume:47
Page:89-98
-
ISSN:0388-1350
-
Container-title:The Journal of Toxicological Sciences
-
language:en
-
Short-container-title:J. Toxicol. Sci.
Author:
Kurosaki Kota1, Uesawa Yoshihiro1
Affiliation:
1. Department of Medical Molecular Informatics, Meiji Pharmaceutical University
Publisher
Japanese Society of Toxicology
Reference39 articles.
1. Aguirre-Plans, J., Piñero, J., Souza, T., Callegaro, G., Kunnen, S.J., Sanz, F., Fernandez-Fuentes, N., Furlong, L.I., Guney, E. and Oliva, B. (2021): An ensemble learning approach for modeling the systems biology of drug-induced injury. Biol. Direct, 16, 5. 2. Amano, Y., Honda, H., Sawada, R., Nukada, Y., Yamane, M., Ikeda, N., Morita, O. and Yamanishi, Y. (2020): In silico systems for predicting chemical-induced side effects using known and potential chemical protein interactions, enabling mechanism estimation. J. Toxicol. Sci., 45, 137-149. 3. Anstee, Q.M., Reeves, H.L., Kotsiliti, E., Govaere, O. and Heikenwalder, M. (2019): From NASH to HCC: current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol., 16, 411-428. 4. Bergstra, J., Yamins, D. and Learning, D.C. (2013): Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. PMLR, 13, 115-123. 5. Bettermann, K., Vucur, M., Haybaeck, J., Koppe, C., Janssen, J., Heymann, F., Weber, A., Weiskirchen, R., Liedtke, C., Gassler, N., Müller, M., de Vos, R., Wolf, M.J., Boege, Y., Seleznik, G.M., Zeller, N., Erny, D., Fuchs, T., Zoller, S., Cairo, S., Buendia, M.A., Prinz, M., Akira, S., Tacke, F., Heikenwalder, M., Trautwein, C. and Luedde, T. (2010): TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell, 17, 481-496.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|