Determination of Optimum Parameter Space of a Fluidic Thrust Vectoring System based on Coanda Effect Using Gradient-Based Optimization Technique

Author:

Abstract

In the realm of aviation, jet propulsion systems serve to provide enhanced maneuverability and to make sure that the aircraft thrust is accurately and precisely regulated during take-off and landing operations. The movement of aerodynamic control surfaces (flaps, slats, elevators, ailerons, spoilers, wing attachments) determines the mobility of practically all aircraft types. Recognized as dependable components in the aviation world for take-off and landing tasks, these control surfaces are being replaced by fluidic thrust vectoring (FTV) systems, especially in small unmanned aerial vehicles (UAVs) and short or vertical take-off and landing aircraft. The FTV system is capable of directing thrust in any preferred direction without the need for any movable components. This paper numerically examines the FTV system by utilizing computational fluid dynamics (CFD) and an optimization technique based on gradients of the system components to understand the physics of the Coanda effect in FTV systems. This research employs gradient-based optimization for nozzle design in order to optimize the parameter space for different velocity ratios (VR) by calculating the moment around the upper Coanda surface, which is used to represent the jet deflection angle. In that context, four different Coanda surface-pintle pair designs for four different VRs are produced. The parameter space shows significant improvement in all four configurations, and results reveal that all output parameters successfully delay separation on the thrust vectoring system's upper Coanda surface. Finally, four optimum design suggestions are tested at various VRs, and the most efficient and proper design is recommended based on output parameters.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3