Instabilities of Transonic Turbulent Flow over a Flat-Sided Wedge

Author:

Abstract

The transonic turbulent two-dimensional airflow over a symmetric flat-sided double wedge is studied numerically. Solutions of the Reynolds-averaged Navier-Stokes equations are obtained with ANSYS-18.2 CFX finite-volume solver of second order accuracy on a fine mesh. The solutions demonstrate an extreme sensitivity of the flow field and lift coefficient to variation of the angle of attack α or free-stream Mach number M∞. Non-unique flow regimes and hysteresis in certain bands of α and M∞ are identified. Interaction of shock waves and local supersonic regions is discussed. The study confirms a concept of shock wave instability due to a coalescence/rupture of supersonic regions. In addition to the instability of shock wave locations, the numerical simulation shows a buffet onset, i.e., self-exciting oscillations due to instability of a boundary layer separation at the rear of wedge. Curious flow regimes with positive lift at negative angles α and, vice versa, with negative lift at positive angles α, are pointed out. A piecewise continuous dependence of the lift coefficient on two free-stream parameters, α and M∞, is discussed.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3