Ferrohydrodynamics Mixed Convection of a Ferrofluid in a Vertical Channel with Porous Blocks of Various Shapes

Author:

Abstract

Numerical simulations of (water-Fe3O4) ferrohydrodynamics (FHD) mixed convection inside a vertical channel are performed. The magnetic field is produced by three sources positioned outside the channel’s right wall. The latter is provided with localized heat sources surmounted by variously shaped porous blocks: rectangular, trapezoidal, and triangular. The general model of Darcy-Brinkman-Forchheimer is employed to describe the fluid flow in the porous regions, and the resulting equations are numerically solved by the finite volume approach. The influence of significant parameters, including the magnetic number (Mn), the Richardson number (Ri), and the shape of blocks, is examined. The results essentially reveal that the enhanced heat transfer brought by the magnetic field and its intensity increase is suppressed by the augmentation of Ri until a critical value, rising with Mn, beyond which the global Nusselt number increases again. The mean friction coefficient increases with increased Mn and reduced Ri. Compared to the case with no magnetic field, the maximum enhancement in heat transfer rate is around 132% for the rectangular blocks, 146% for the trapezoidal blocks, and 160% for the triangular blocks, while the maximum increase in pressure drop is approximately 45% for all the shapes. The triangular shape seems the most efficient because it leads to high heat transfer rates and low mean friction coefficients; its performance factor is 2.32 for a dominant magnetic field and 2.62 for a dominant buoyancy force. The current research's conclusions will help optimize the operation of various thermal engineering systems, including electronic devices, where the improved heat removal rate will keep the electronic components at a safe operating temperature.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3