Investigation of Rheological and Geometric Properties Effect on Nonlinear Behaviour of Fluid Viscous Dampers

Author:

Abstract

Global approval of the use of fluid viscous dampers to control the buildings response against dynamic loadings is growing. The idea behind incorporating additional dampers is that they will reduce most of the energy that is transmitted to the building during shaking event. The objective of this work is to identify and enhance the design parameters that control the nonlinear behaviour of fluid viscous damper subjected to sinusoidal excitation. For this, a numerical model of the flow inside the dissipater has been carried out based on finite volume method. A novel approach has been adopted to simulate elastic behaviour of the fluid, taking into account its compressibility by using the Murnaghan equation of state. A comparison between the calculations of the proposed model and the experimental tests was carried out. The model proved to be sufficiently accurate. A fluid flow analysis was then conducted to fully understand the internal mechanism of the damper. A parametric study was then performed by varying aspects such as dimensions, geometric relationships between components and fluid properties in order to better understand their effect on the non-linear behaviour of the device. The results highlight the relationship between the parameters governing the shear thinning behaviour of the fluid and the non-linearity exponent of the damper. This makes it possible to better control the non-linear behaviour of the device by selecting the appropriate silicone oil and the appropriate geometric dimensions of its components.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3