Numerical Analysis of Transient Vortex Formation at the Outlet of a Tank Containing Gas-Liquid Phases

Author:

Abstract

One of the basic phenomena when a liquid leaves a tank is the formation of vortices. This phenomenon can have a significant impact on the liquid mass remaining in the tank and the ingress of air and bubbles into the system. As a result, the performance of the system can be disturbed. The purpose of this study is to numerically investigate the effect of gas pressure on vortex formation and critical height. It also verifies the relationships presented for turbulent viscosity. In addition, the near-wall behavior of the analytical relationships proposed for the tangential velocity is revised based on the boundary layer theory. Some common effective factors such as angular velocity, discharge time, and liquid height are also investigated. The volume of fluid (VOF) model and the Transitional SST k-ω turbulence model were used to solve the two-phase turbulent flow. The results show that increasing the gas pressure from 1 to 5 bar and its direct impact on the liquid surface significantly accelerates the formation of the vortex and the critical height. This phenomenon causes the air core to reach the inlet of the outlet pipe approximately 7 seconds earlier after the start of the liquid discharge. As a result, much more liquid mass remains in the tank. The increase in the angular velocity of the reference frame from 0.1 to 1 rad/s also causes the critical height to be reached much earlier and the remaining liquid mass to increase by 32 kg. In addition, the amount and variations of turbulent viscosity differ significantly from the semi-empirical constants, limiting their use to certain flows.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3