Temporal Flow Characteristics of Three-Dimensional Centrifugal Impeller Suction System at Vacuum Conditions

Author:

Abstract

Temporal flow characteristics of a 3D centrifugal impeller suction system were numerically studied in vacuum conditions. The blockage of the high-speed rotating impeller appeared, which greatly dropped the suction of the layer suction device. The temporal flow characteristics of the 3D centrifugal impeller suction system were worthy of attention in vacuum conditions. Separation vortices were generated near the blade suction surface. The blocking mechanism of the passage was further analyzed at different extremely low flow rates through the time-space evolution of the streamline. The Q-criteria was introduced to analyze the vortex evolution within the fluid domain of the impeller. Vortex evolution law was captured—the vortices always generated near the suction surface of the blade and moved to the pressure surface of the adjacent blade in the same passage and disappeared. The uniform distribution of three stall cells was captured through the diagram of turbulent kinetic energy. The flow rate increased, and the vortex evolution period gradually decreased. The comparison of pressure fluctuations in different conditions further demonstrated the flow mechanism at the vacuum flow rate was different from that at low flow rates. The sharp increase of pressure fluctuations near the blade pressure surface was consistent with the phenomenon near the suction surface. The pressure fluctuation at extremely low flow was mainly composed of scattered fluctuations caused by fluid separation. The steady and unsteady characteristics described the internal flow characteristics of this suction system at vacuum-flow rates. Theresults provide a profound design for vacuum cleaners.

Publisher

Academic World Research

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3