Screening and Optimization of IAA Production by PGPR isolated from Rhizosphere of a Pterocarpus marsupium Roxb. and their Effect on Plant Growth

Author:

Randive Vaishali Sanjay1ORCID,Agnihotri Snehal Nitin2ORCID,Bhagat Rani Babanrao3ORCID

Affiliation:

1. 1Department of Biotechnology, Modern College of Arts, Science and Commerce College, Ganeshkhind, Pune Maharashtra India.

2. 2Department of Microbiology, Tuljaram Chaturchand College, Baramati, Dist- Pune. Maharashtra, India

3. 3Department of Botany, Baburaoji Gholap College of Arts, Commerce, and Science, Sangvi, Pune, Maharashtra, India.

Abstract

Indole Acetic Acid (IAA) production is important attribute of PGPR that promote plant growth and development. The rhizosphere is hotspot in the soil that harbors PGPR. The present study was aimed with isolation and screening of IAA producing bacteria from the rhizosphere of Pterocarpus marsupium Roxb. Optimum culture conditions (pH, temperature, incubation period and L-tryptophan concentration for IAA production were studied for selected isolates and their effect on wheat growth and root development was evaluated. Among twenty four IAA producing isolates five isolates (Et1, Rp1, Rp5, Rp6, and Rp9) produced maximum IAA in range of 50-70 μg/mL and was used in optimization studies. Maximum IAA was produced in 96 hours of incubation, at pH 7 and with 0.1mg/mL of L-tryptophan by all five isolates. 30oC is the most suitable temperature for Et1, Rp1, Rp5, Rp9; whereas Rp6 produced nearly same amount of IAA at wide range of temperature 30-35oC (77-84.12 μg/mL) and at pH 7-8 ( 73-74μg/mL). Out of the five isolates, Rp6 exhibits the highest potential, having a maximum IAA of 84.12 μg/mL at 35°C and pH 7. Although tryptophan influences IAA synthesis but at higher concentration of tryptophan inhibits IAA synthesis. To validate the production of IAA, crude extracts were analyzed using thin layer chromatography (TLC). A spot of standard IAA with the same Rf value (0.91) was found to match a specific spot from the crude IAA.

Publisher

Enviro Research Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3