A comparison of cepstral and spectral features using recurrent neural network for spoken language identification

Author:

Thukroo Irshad Ahmad,Bashir Rumaan,Giri Kaiser Javeed

Abstract

Spoken language identification is the process of confirming labels regarding the language of an audio slice regardless of various features such as length, ambiance, duration, topic or message, age, gender, region, emotions, etc. Language identification systems are of great significance in the domain of natural language processing, more specifically multi-lingual machine translation, language recognition, and automatic routing of voice calls to particular nodes speaking or knowing a particular language. In his paper, we are comparing results based on various cepstral and spectral feature techniques such as Mel-frequency Cepstral Coefficients (MFCC), Relative spectral-perceptual linear prediction coefficients (RASTA-PLP), and spectral features (roll-off, flatness, centroid, bandwidth, and contrast) in the process of spoken language identification using Recurrent Neural Network-Long Short Term Memory (RNN-LSTM) as a procedure of sequence learning. The system or model has been implemented in six different languages, which contain Ladakhi and the five official languages of Jammu and Kashmir (Union Territory). The dataset used in experimentation consists of TV audio recordings for Kashmiri, Urdu, Dogri, and Ladakhi languages. It also consists of standard corpora IIIT-H and VoxForge containing English and Hindi audio data. Pre-processing of the dataset is done by slicing different types of noise with the use of the Spectral Noise Gate (SNG) and then slicing into audio bursts of 5 seconds duration. The performance is evaluated using standard metrics like F1 score, recall, precision, and accuracy. The experimental results showed that using spectral features, MFCC and RASTA-PLP achieved an average accuracy of 76%, 83%, and 78%, respectively. Therefore, MFCC proved to be the most convenient feature to be exploited in language identification using a recurrent neural network long short-term memory classifier.

Publisher

Academic Publishing Pte. Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3