Author:
Wang Yuchen,Lin Yin-Shan,Huang Ruixin,Wang Jinyin,Liu Sensen
Abstract
This paper begins with a theoretical exploration of the rise of large language models (LLMs) in Human-Computer Interaction (HCI), their impact on user experience (HX) and related challenges. It then discusses the benefits of Human-Centered Design (HCD) principles and the possibility of their application within LLMs, subsequently deriving six specific HCD guidelines for LLMs. Following this, a preliminary experiment is presented as an example to demonstrate how HCD principles can be employed to enhance user experience within GPT by using a single document input to GPT’s Knowledge base as new knowledge resource to control the interactions between GPT and users, aiming to meet the diverse needs of hypothetical software learners as much as possible. The experimental results demonstrate the effect of different elements’ forms and organizational methods in the document, as well as GPT’s relevant configurations, on the interaction effectiveness between GPT and software learners. A series of trials are conducted to explore better methods to realize text and image displaying, and jump action. Two template documents are compared in the aspects of the performances of the four interaction modes. Through continuous optimization, an improved version of the document was obtained to serve as a template for future use and research.
Publisher
Academic Publishing Pte. Ltd.
Reference30 articles.
1. Gokul A. LLMs and AI: Understanding Its Reach and Impact. Published online May 4, 2023. doi: 10.20944/preprints202305.0195.v1
2. Liu J, Shen D, Zhang Y, et al. What Makes Good In-Context Examples for GPT-3? Published online 2021. doi: 10.48550/ARXIV.2101.06804
3. Park TJ, Dhawan K, Koluguri N, et al. Enhancing Speaker Diarization with Large Language Models: A Contextual Beam Search Approach. Published online 2023. doi: 10.48550/ARXIV.2309.05248
4. Thomas P, Spielman S, Craswell N, et al. Large language models can accurately predict searcher preferences. Published online 2023. doi: 10.48550/ARXIV.2309.10621
5. Ortega Pedro A, Maini V, DeepMind Safety Team. Building safe artificial intelligence: specification, robustness, and assurance. Available online: https://deepmindsafetyresearch.medium.com/building-safe-artificial-intelligence-52f5f75058f1 (accessed on 2 January 2024).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. TD3 Based Collision Free Motion Planning for Robot Navigation;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10