Application value of machine learning models in predicting intraoperative hypothermia in laparoscopic surgery for polytrauma patients

Author:

Zhu Kun,Zhang Zi-Xuan,Zhang Miao

Abstract

BACKGROUND Hypothermia during laparoscopic surgery in patients with multiple trauma is a significant concern owing to its potential complications. Machine learning models offer a promising approach to predict the occurrence of intraoperative hypothermia. AIM To investigate the value of machine learning model to predict hypothermia during laparoscopic surgery in patients with multiple trauma. METHODS This retrospective study enrolled 220 patients who were admitted with multiple injuries between June 2018 and December 2023. Of these, 154 patients were allocated to a training set and the remaining 66 were allocated to a validation set in a 7:3 ratio. In the training set, 53 cases experienced intraoperative hypothermia and 101 did not. Logistic regression analysis was used to construct a predictive model of intraoperative hypothermia in patients with polytrauma undergoing laparoscopic surgery. The area under the curve (AUC), sensitivity, and specificity were calculated. RESULTS Comparison of the hypothermia and non-hypothermia groups found significant differences in sex, age, baseline temperature, intraoperative temperature, duration of anesthesia, duration of surgery, intraoperative fluid infusion, crystalloid infusion, colloid infusion, and pneumoperitoneum volume (P < 0.05). Differences between other characteristics were not significant (P > 0.05). The results of the logistic regression analysis showed that age, baseline temperature, intraoperative temperature, duration of anesthesia, and duration of surgery were independent influencing factors for intraoperative hypothermia during laparoscopic surgery (P < 0.05). Calibration curve analysis showed good consistency between the predicted occurrence of intraoperative hypothermia and the actual occurrence (P > 0.05). The predictive model had AUCs of 0.850 and 0.829 for the training and validation sets, respectively. CONCLUSION Machine learning effectively predicted intraoperative hypothermia in polytrauma patients undergoing laparoscopic surgery, which improved surgical safety and patient recovery.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3