The adaptive potential of North American subtype H7N2 avian influenza viruses to mammals

Author:

Lyashko Aleksandr V.ORCID,Rudneva Irina A.ORCID,Shcherbinin Dmitrii N.ORCID,Lomakina Natalia F.ORCID,Treshchalina Anastasia A.ORCID,Kupriyanova Irina M.ORCID,Gambaryan Alexandra S.ORCID,Timofeeva Elena B.ORCID,Shilov Aleksandr A.ORCID,Sadykova Galina K.ORCID,Prilipov Alexey G.ORCID,Timofeev Boris I.ORCID,Shmarov Maxim M.ORCID,Ryazanova Elena L.ORCID,Timofeeva Tatiana A.ORCID

Abstract

Introduction. H7 subtype avian influenza viruses causing severe epizootics among birds are phylogenetically different in the Eastern and Western hemispheres. Numerous human infections caused by these viruses in the Eastern hemisphere indicate that H7 viruses can overcome the interspecies barrier and pose a potential threat of a new pandemic.The H7N2 viruses with deletion of amino acids 221–228 (H3 numbering) in hemagglutinin (HA) had been circulating among poultry in the Western Hemisphere during 1996–2006, and had once again been detected in 2016 in an animal shelter, where they caused cat diseases. The objective of this study is to elucidate the mechanism of adaptation to mammals of North American H7N2 influenza viruses with deletion in HA. Materials and methods. The A/chicken/New Jersey/294598-12/2004 (H7N2) virus was adapted to mice by the lung passages. Complete genomes of original and mouse-adapted viruses were analyzed. The receptor specificity and thermostability of viruses, HA activation pH and virulence for mice were determined. Results. The non-pathogenic H7N2 avian influenza virus became pathogenic after 10 passages in mice. Amino acid substitutions occurred in five viral proteins: one in PB2 (E627K), NA (K127N), NEP (E14Q), four in HA and six in NS1. Mutations in HA slightly changed receptor specificity but increased the pH of HA activation by 0.4 units. The NS1 protein undergone the greatest changes in the positions (N73T, S114G, K118R, G171A, F214L and G224R), where amino acid polymorphisms were observed in the original virus, but only minor amino acid variants have been preserved in the mouse adapted variant. Conclusion. The results show that H7N2 viruses have the potential to adapt to mammals. The increase in virulence is most likely due to the adaptive E627K mutation in PB2 and possibly in HA.

Publisher

Central Research Institute for Epidemiology

Subject

General Medicine,Medicine (miscellaneous)

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3