Parallels Between Timing of Onset Responses of Single Neurons in Cat and of Evoked Magnetic Fields in Human Auditory Cortex

Author:

Biermann Silke1,Heil Peter1

Affiliation:

1. Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany

Abstract

Sound onsets constitute particularly salient transients and evoke strong responses from neurons of the auditory system, but in the past, such onset responses have often been analyzed with respect to steady-state features of sounds, like the sound pressure level. Recent electrophysiological studies of single neurons from the auditory cortex of anesthetized cats have revealed that the timing and strength of onset responses are shaped by dynamic stimulus properties at their very onsets. Here we demonstrate with magnetoencephalography that stimulus-response relationships very similar to those of the single neurons are observed in two onset components, N100m and P50m, of auditory evoked magnetic fields (AEFs) from the auditory cortex of awake humans. In response to tones shaped with cosine-squared rise functions, N100m and P50m peak latencies vary systematically with tone level and rise time but form a rather invariant function of the acceleration of the envelope at tone onset. Hence N100m and P50m peak latencies, as well as peak amplitudes, are determined by dynamic properties of the stimuli within the first few milliseconds, though not necessarily by acceleration. The changes of N100m and P50m peak latencies with rise time and level are incompatible with a fixed-amplitude threshold model. The direct comparison of the neuromagnetic and single-neuron data shows that, on average, the variance of the neuromagnetic data is larger by one to two orders of magnitude but that favorable measurements can yield variances as low as those derived from neurons with mediocre precision of response timing. The striking parallels between the response timing of single cortical neurons and of AEFs provides a stronger link between single neuron and population activity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3