Hypoxic Augmentation of Fast-Inactivating and Persistent Sodium Currents in Rat Caudal Hypothalamic Neurons

Author:

Horn Eric M.1,Waldrop Tony G.1

Affiliation:

1. Department of Molecular and Integrative Physiology, Neuroscience Program, and College of Medicine, University of Illinois, Urbana, Illinois 61801

Abstract

Previous work from this laboratory has indicated that TTX-sensitive sodium channels are involved in the hypoxia-induced inward current response of caudal hypothalamic neurons. Since this inward current underlies the depolarization and increased firing frequency observed in these cells during hypoxia, the present study utilized more detailed biophysical methods to specifically determine which sodium currents are responsible for this hypoxic activation. Caudal hypothalamic neurons from ∼3-wk-old Sprague-Dawley rats were acutely dissociated and patch-clamped in the voltage-clamp mode to obtain recordings from fast-inactivating and persistent (noninactivating) whole cell sodium currents. Using computer-generated activation and inactivation voltage protocols, rapidly inactivating sodium currents were analyzed during normal conditions and during a brief (3–6 min) period of severe hypoxia. In addition, voltage-ramp and extended-voltage-activation protocols were used to analyze persistent sodium currents during normal conditions and during hypoxia. A polarographic oxygen electrode determined that the level of oxygen in this preparation quickly dropped to 10 Torr within 2 min of initiation of hypoxia and stabilized at <0.5 Torr within 4 min. During hypoxia, the peak fast-inactivating sodium current was significantly increased throughout the entire activation range, and both the activation and inactivation values ( V 1/2) were negatively shifted. Furthermore both the voltage-ramp and extended-activation protocols demonstrated a significant increase in the persistent sodium current during hypoxia when compared with normoxia. These results demonstrate that both rapidly inactivating and persistent sodium currents are significantly enhanced by a brief hypoxic stimulus. Furthermore the hypoxic-induced increase in these currents most likely is the primary mechanism for the depolarization and increased firing frequency observed in caudal hypothalamic neurons during hypoxia. Since these neurons are important in modulating cardiorespiratory activity, the oxygen responsiveness of these sodium currents may play a significant role in the centrally mediated cardiorespiratory response to hypoxia.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3