Affiliation:
1. Université de Montréal
Abstract
Galvanic vestibular stimulation (GVS) is used to assess vestibular function, but vestibular responses can exhibit variability depending on protocols or intensities used. We measured head acceleration in healthy subjects to identify an objective motor threshold on which to base GVS intensity when assessing postural responses. Thirteen healthy right-handed subjects stood on a force platform, eyes closed, head facing forward. An accelerometer was placed on the vertex to detect head acceleration, and electromyography activity of the right soleus was recorded. GVS (200 ms; current steps 0.5;1-4mA) was applied in a binaural and bipolar configuration. 1) GVS induced a biphasic accelerometer response at a latency of 15 ms. Based on response amplitude, we constructed a recruitment curve for all participants and determined the motor threshold. In parallel, the method of limits was used to devise a more rapid approach to determine motor threshold. 2) We observed significant differences between motor threshold based on therecruitment curve and perceptual thresholds (sensation/perception of movement). No significant difference was observed between the motor threshold based on the method of limits and perceptual thresholds . 3) Using orthogonal polynomial contrasts, we observed a linear progression between multiples of the objective motor threshold (0.5, 0.75, 1, 1.5x motor threshold) and the 95% confidence ellipse area, the first peak of center of pressure velocity, and the short and medium latency responses in the soleus. Hence, an objective motor threshold and a recruitment curve for GVS were determined based on head acceleration, which could increase understanding of the vestibular system.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
Fonds de recherche du Quebec en Sante
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献