Characterization of Chloride Currents and Their Noradrenergic Modulation in Rat Taste Receptor Cells

Author:

Herness M. Scott1,Sun Xiao-Dong2

Affiliation:

1. Department of Oral Biology, College of Dentistry, Ohio State University, Columbus, Ohio 43210; and

2. Department of Pharmacology, Pharmacia & UpJohn Incorporated, Kalamazoo, Michigan 49007

Abstract

Taste receptor cells contain a heterogeneous array of voltage-dependent ion conductances that are essential components for the transduction of gustatory stimuli. Although mechanistic roles have been proposed for several cationic conductances, the understanding of anionic currents is rudimentary. This study characterizes biophysical and pharmacological properties of chloride currents in rat posterior taste cells using whole cell patch-clamp recording technique. Taste cells express a heterogeneous array of chloride currents that displayed strong outward rectification, contained both calcium–dependent and calcium–independent components, and achieved a maximal conductance of almost 1 nS. Reversal potentials altered predictably with changes in chloride concentration. Currents were sensitive to inhibition by the chloride channel pharmacological agents DIDS, SITS, and niflumic acid but were insensitive to 9-AC. Adrenergic enhancement of chloride currents, present in other cell types, was tested on taste cells with the β-adrenergic agonist isoproterenol (ISP). ISP enhanced the outwardly rectifying portion of the chloride current. This enhancement was calcium dependent and was blocked by the β-adrenergic antagonist propranolol. Collectively these observations suggest that chloride currents may participate not only in usually ascribed functions such as stabilization of the membrane potential and volume regulation but additionally play active modulatory roles in the transduction of gustatory stimuli.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3