Isodirectional Tuning of Adjacent Interneurons and Pyramidal Cells During Working Memory: Evidence for Microcolumnar Organization in PFC

Author:

Rao Srinivas G.1,Williams Graham V.1,Goldman-Rakic Patricia S.1

Affiliation:

1. Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510

Abstract

Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. Studies on the cellular mechanisms of working memory demonstrated that neurons in dorsolateral prefrontal cortex (dPFC) exhibit directionally tuned activity during an oculomotor delayed response. To determine the particular contributions of pyramidal cells and interneurons to spatial tuning in dPFC, we examined both individually and in pairs the tuning properties of regular-spiking (RS) and fast-spiking (FS) units that represent putative pyramidal cells and interneurons, respectively. Our main finding is that FS units possess spatially tuned sensory, motor, and delay activity (i.e., “memory fields”) similar to those found in RS units. Furthermore, when recorded simultaneously at the same site, the majority of neighboring neurons, whether FS or RS, displayed isodirectional tuning, i.e., they shared very similar tuning angles for the sensory and delay phases of the task. As the trial entered the response phase of the task, many FS units shifted their direction of tuning and became cross-directional to adjacent RS units by the end of the trial. These results establish that a large part of inhibition in prefrontal cortex is spatially oriented rather than being untuned and simply regulating the threshold response of pyramidal cell output. Moreover, the isodirectional tuning between adjacent neurons supports a functional microcolumnar organization in dPFC for spatial memory fields similar to that found in other areas of cortex for sensory receptive fields.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3