Processing of Sound Sequences in Macaque Auditory Cortex: Response Enhancement

Author:

Brosch Michael1,Schulz Andreas1,Scheich Henning1

Affiliation:

1. Leibniz-Institut für Neurobiologie, 39118 Magdeburg, Germany

Abstract

It is well established that the tone-evoked response of neurons in auditory cortex can be attenuated if another tone is presented several hundred milliseconds before. The present study explores in detail a complementary phenomenon in which the tone-evoked response is enhanced by a preceding tone. Action potentials from multiunit groups and single units were recorded from primary and caudomedial auditory cortical fields in lightly anesthetized macaque monkeys. Stimuli were two suprathreshold tones of 100-ms duration, presented in succession. The frequency of the first tone and the stimulus onset asynchrony (SOA) between the two tones were varied systematically, whereas the second tone was fixed. Compared with presenting the second tone in isolation, the response to the second tone was enhanced significantly when it was preceded by the first tone. This was observed in 87 of 130 multiunit groups and in 29 of 69 single units with no obvious difference between different auditory fields. Response enhancement occurred for a wide range of SOA (110–329 ms) and for a wide range of frequencies of the first tone. Most of the first tones that enhanced the response to the second tone evoked responses themselves. The stimulus, which on average produced maximal enhancement, was a pair with a SOA of 120 ms and with a frequency separation of about one octave. The frequency/SOA combinations that induced response enhancement were mostly different from the ones that induced response attenuation. Results suggest that response enhancement, in addition to response attenuation, provides a basic neural mechanism involved in the cortical processing of the temporal structure of sounds.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3