Inhibitory Control of LTP and LTD: Stability of Synapse Strength

Author:

Steele Philip M.1,Mauk Michael D.1

Affiliation:

1. W. M. Keck Center for the Neurobiology of Learning and Memory; and the Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77030

Abstract

Inhibitory control of LTP and LTD: stability of synapse strength. Although much is known about the induction of synaptic plasticity, the persistence of memories suggests the importance of understanding factors that maintain synaptic strength and prevent unwanted synaptic changes. Here we present evidence that recurrent inhibitory connections in the CA1 region of hippocampus may contribute to this task by modulating the relative ability to induce long-term potentiation and depression (LTP and LTD). Bath application of the γ-aminobutyric acid (GABA) type A agonist muscimol to hippocampal slices increased the range of frequencies that produce LTD, whereas in the presence of the GABA type A antagonist picrotoxin LTD was induced only at very low stimulation frequencies (0.25–0.5 Hz). Because one source of GABAergic input to CA1 pyramidal cells is via recurrent inhibition, we tested the prediction that elevated postsynaptic spike activity would increase feedback GABA inhibition and favor the induction of LTD. By using an induction stimulation of 8 Hz, which alone produced no net change in synaptic strength, we found that stimulation presented during antidromic activation of pyramidal cell spikes induced LTD. This effect was blocked by picrotoxin. The influence of recurrent inhibition on LTP and LTD displays properties that may decrease the potential for self-reinforcing, runaway changes in synapse strength. A mechanism of this sort may help maintain patterns of synaptic strengths despite the ongoing opportunities for plasticity produced by synapse activation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3