Motor Cortical Activity During Drawing Movements: Population Representation During Lemniscate Tracing

Author:

Schwartz Andrew B.1,Moran Daniel W.1

Affiliation:

1. The Neurosciences Institute, San Diego, California 92121

Abstract

Activity was recorded extracellularly from single cells in motor and premotor cortex as monkeys traced figure-eights on a touch-sensitive computer monitor using the index finger. Each unit was recorded individually, and the responses collected from four hemispheres (3 primary motor and 1 dorsal premotor) were analyzed as a population. Population vectors constructed from this activity accurately and isomorphically represented the shape of the drawn figures showing that they represent the spatial aspect of the task well. These observations were extended by examining the temporal relation between this neural representation and finger displacement. Movements generated during this task were made in four kinematic segments. This segmentation was clearly evident in a time series of population vectors. In addition, the [Formula: see text] power law described for human drawing was also evident in the neural correlate of the monkey hand trajectory. Movement direction and speed changed continuously during the task. Within each segment, speed and direction changed reciprocally. The prediction interval between the population vector and movement direction increased in the middle of the segments where curvature was high, but decreased in straight portions at the beginning and end of each segment. In contrast to direction, prediction intervals between the movement speed and population vector length were near-constant with only a modest modulation in each segment. Population vectors predicted direction (vector angle) and speed (vector length) throughout the drawing task. Joint angular velocity and arm muscle EMG were well correlated to hand direction, suggesting that kinematic and kinetic parameters are correlated in these tasks.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3