Modeling spatial navigation in the presence of dynamic obstacles: a differential games approach

Author:

Darekar Anuja12,Goussev Valery2,McFadyen Bradford J.34,Lamontagne Anouk12,Fung Joyce12ORCID

Affiliation:

1. School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada

2. Feil and Oberfeld Research Center, Jewish Rehabilitation Hospital site of the Centre Intégré de Santé et Services Sociaux de Laval, Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation, Laval, Quebec, Canada

3. Centre for Interdisciplinary Research in Rehabilitation and Social Integration at the Quebec Rehabilitation Institute, Montreal, Quebec, Canada

4. Department of Rehabilitation, Faculty of Medicine, Laval University, Laval, Quebec, Canada

Abstract

Obstacle circumvention strategies can be shaped by the dynamic interaction of an individual (evader) and an obstacle (pursuer). We have developed a mathematical model with predictive and emergent components, using experimental data from seven healthy young adults walking toward a target while avoiding collision with a stationary or moving obstacle (approaching head-on, or diagonally 30° left or right) in a virtual environment. Two linear properties from the predictive component enable the evader to predict the minimum distance between itself and the obstacle at all times, including the future intersection of trajectories. The emergent component uses the classical differential games model to solve for an optimal circumvention while reaching the target, wherein the locomotor strategy is influenced by the obstacle, target, and the evader velocity. Both model components were fitted to a different set of experimental data obtained from five poststroke and healthy participants to derive the minimum predicted distance (predictive component) and obstacle influence dimensions (emergent component) during circumvention. Minimum predicted distance between evader and pursuer was kept constant when the evader was closest to the obstacle in all participants. Obstacle influence dimensions varied depending on obstacle approach condition and preferred side of circumvention, reflecting differences in locomotor strategies between poststroke and healthy individuals. Additionally, important associations between model outputs and observed experimental outcomes were found. The model, supported by experimental data, suggests that both predictive and emergent processes can shape obstacle circumvention strategies in healthy and poststroke individuals.NEW & NOTEWORTHY Obstacle circumvention during goal-directed locomotion is modeled with a new mathematical approach comprising both predictive and emergent elements. The major novelty is using differential games solutions to illustrate the dynamic interactions between the individual as an evader and the approaching obstacle as a pursuer. The model is supported by experimental evidence that explains the behavior along the continuum of locomotor adaptation displayed by healthy subjects and individuals with stroke.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Fonds de Recherche du Québec - Santé - 'Projet Strategique Innovant: Living Mall Project'

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3