What is the role of the medial olivocochlear system in speech-in-noise processing?

Author:

de Boer Jessica12,Thornton A. Roger D.2,Krumbholz Katrin1

Affiliation:

1. MRC Institute of Hearing Research, Nottingham; and

2. MRC Institute of Hearing Research Southampton Section, Southampton, United Kingdom

Abstract

The medial olivocochlear (MOC) bundle reduces the gain of the cochlear amplifier through reflexive activation by sound. Physiological results indicate that MOC-induced reduction in cochlear gain can enhance the response to signals when presented in masking noise. Some previous studies suggest that this “antimasking” effect of the MOC system plays a role in speech-in-noise perception. The present study set out to reinvestigate this hypothesis by correlating measures of MOC activity and speech-in-noise processing across a group of normal-hearing participants. MOC activity was measured using contralateral suppression of otoacoustic emissions (OAEs), and speech-in-noise processing was measured by measuring the effect of noise masking on performance in a consonant-vowel (CV) discrimination task and on auditory brain stem responses evoked by a CV syllable. Whereas there was a significant correlation between OAE suppression and both measures of speech-in-noise processing, the direction of this correlation was opposite to that predicted by the antimasking hypothesis, in that individuals with stronger OAE suppression tended to show greater noise-masking effects on CV processing. The current results indicate that reflexive MOC activation is not always beneficial to speech-in-noise processing. We propose an alternative to the antimasking hypothesis, whereby the MOC system benefits speech-in-noise processing through dynamic (e.g., attention- and experience-dependent), rather than reflexive, control of cochlear gain.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3