Affiliation:
1. Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
2. Department of Biology, Case Western Reserve University, Cleveland, Ohio
Abstract
The olfactory tubercle (OT), a trilaminar structure located in the basal forebrain of mammals, is thought to play an important role in olfaction. While evidence has accumulated regarding the contributions of the OT to odor information processing, studies exploring the role of the OT in olfaction in awake animals remain unavailable. In the present study, we begin to address this void through multiday recordings of local field potential (LFP) activity within the OT of awake, freely exploring Long-Evans rats. We observed spontaneous OT LFP activity consisting of theta- (2–12 Hz), beta- (15–35 Hz) and gamma- (40–80 Hz) band activity, characteristic of previous reports of LFPs in other principle olfactory structures. Beta- and gamma-band powers were enhanced upon odor presentation. Simultaneous recordings of OT and upstream olfactory bulb (OB) LFPs revealed odor-evoked LFP power at statistically similar levels in both structures. Strong spectral coherence was observed between the OT and OB during both spontaneous and odor-evoked states. Furthermore, the OB theta rhythm more strongly cohered with the respiratory rhythm, and respiratory-coupled theta cycles in the OT occurred following theta cycles in the OB. Finally, we found that the animal's internal state modulated LFP activity in the OT. Together, these data provide initial insights into the network activity of the OT in the awake rat, including spontaneous rhythmicity, odor-evoked modulation, connectivity with upstream sensory input, and state-dependent modulation.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献