Role of denervation in modulating IIb MHC gene expression in response to T3 plus unloading state

Author:

di Maso Nick A.1,Haddad Fadia1,Zeng Ming1,McCue Samuel A.1,Baldwin Kenneth M.1

Affiliation:

1. Department of Physiology and Biophysics, University of California, Irvine, California 92697

Abstract

Previously, we have reported that the combination of hindlimb suspension (HS) and thyroid hormone [triiodothyronine (T3)] treatment induces the de novo expression of the fast IIb myosin heavy chain (MHC) gene in the soleus. Thus we tested the hypotheses that the induction of IIb MHC expression with HS + T3 is prevented with denervation and that this IIb induction is regulated by transcriptional processes. Adult female rats were subjected to 2 wk of combined HS + T3 in which one side of the lower leg was simultaneously denervated. HS + T3 caused decreased expression of the slow type I MHC and concomitant increases in both the fast type IIx and IIb MHC isoforms in the intact soleus muscle. Denervation prevented the endogenous expression of the IIb MHC gene at both the protein and mRNA levels. Although HS + T3intervention was able to markedly increase the expression of the 2.6-kb IIb MHC promoter-reporter construct using direct gene transfer, this induction, however, was not inhibited by denervation. These findings collectively suggest that normal innervation is essential for inducing the unique expression of the IIb MHC in a slow muscle in response to HS + T3; however, in the denervated muscle, there is a discordance between the regulation of the endogenous IIb MHC gene relative to the exogenous IIb MHC promoter-reporter construct.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3