Affiliation:
1. Gastrointestinal Diseases Research Unit, Departments ofMedicine and Physiology, and
2. Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 5G2
Abstract
A novel in vitro model that combined functional and morphological techniques was employed to directly examine pathways regulating Brunner's gland secretion in isolation from epithelium. In vitro submucosal preparations were dissected from guinea pig duodenum. A videomicroscopy technique was used to measure changes in luminal diameter of glandular acini as an index of activation of secretion. Carbachol elicited concentration-dependent dilations of the lumen (EC50= 2 μM) by activating muscarinic receptors on acinar cells. Ultrastructural and histological analyses demonstrated that dilation was accompanied by single and compound exocytosis of mucin-containing granules and the accumulation of mucoid material within the lumen. Inflammatory mediators (histamine, PGE1, PGE2) and intestinal hormones (CCK, gastrin, vasoactive intestinal polypeptide, secretin) also stimulated glandular secretion, whereas activation of submucosal secretomotor neurons by 5-hydroxytryptamine did not. This study directly demonstrates that multiple hormonal, inflammatory, and neurocrine agents activate Brunner's glands, whereas many have dissimilar effects on the epithelium. This suggests that Brunner's glands are regulated by pathways that act both in parallel to and in isolation from those controlling epithelial secretion.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献