Pattern of Interhemispheric Synchronization in HVc During Singing Correlates With Key Transitions in the Song Pattern

Author:

Schmidt Marc F.12

Affiliation:

1. Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

2. Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

Many complex voluntary behaviors require that motor commands be tightly coordinated between cerebral hemispheres. The neural mechanisms underlying such coordination, however, remain poorly understood. Song production in birds is a highly stereotyped learned motor behavior that requires finely tuned coordination between hemispheres. In the present study, neural activity was recorded simultaneously from the song control nucleus HVc in each hemisphere of singing adult male zebra finches ( Taeniopygia guttata). In all cases, the pattern of recorded multiunit activity in each hemisphere was highly correlated during short segments of the song motor pattern. These correlated segments often consisted of multiple short bursts of activity. Because of the absence of interhemispheric connections between song control nuclei, these observations suggest that HVc activity is “synchronized” by common inputs to both hemispheres. Using sliding-window cross-covariance analyses, periods of high interhemispheric synchronization were found to be time-locked to the acoustic onset of syllables and notes. In some cases, precisely synchronized bursts in both hemispheres were also observed during periods associated with the intersyllable silent interval. In all cases, activity was correlated between hemispheres independently of the recording site, suggesting that all regions of HVc may be globally synchronized during these short segments of the song. Given the anatomical organization of the song system, inputs originating from either thalamus or midbrain are proposed to act as timing signals that initiate and synchronize intrinsic motor networks within each HVc thus allowing for the precise coordination of motor commands across hemispheres.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3