Characterization of an apical sodium conductance in rabbit cecum

Author:

Sellin J. H.1,Hall A.1,Cragoe E. J.1,Dubinsky W. P.1

Affiliation:

1. Department of Medicine, University of Texas Medical School, Houston77030.

Abstract

Rabbit cecum in vitro exhibits electrogenic Na+ absorption not blocked by amiloride but inhibited by the amiloride analogue phenamil, suggesting transport mediated by modified Na+ channels in the apical membrane. To further characterize the mechanism(s) of Na+ absorption, microelectrode impalements of single epithelial cells were performed to measure intracellular potential difference (psi mc) and fractional resistance of the apical membrane, to characterize ionic conductances of the apical and basolateral membranes, and to determine the response to phenamil. The electrical potential profile of cecum (psi mc = -31 +/- 2 mV, fractional resistance = 0.71 +/- 0.03) was qualitatively similar to distal colon. The apical membrane exhibited responses suggesting both Na+ and K+ conductances, whereas the basolateral membrane appeared to have a predominant K+ conductance. Phenamil elicited a depolarization of psi mc and a decrease in fractional resistance; neither response is consistent with inhibition of an apical Na+ conductance. Studies were performed in apical membrane vesicles to characterize ionic conductances by a second independent methodology. These additional studies confirmed the presence of an apical Na+ conductance not inhibited by either amiloride or phenamil. Thus both microelectrode impalement and vesicle studies demonstrated an apical membrane Na+ conductance in rabbit cecum; this is the likely mechanism of electrogenic Na+ absorption in this epithelium. However, the anomalous response to phenamil suggests that the inhibitory effect of this agent is not directly on the conductance. The cecal transporter may be one of a family of cation channels related to, but significantly different from, the classic Na+ channel found in distal colon and other tight epithelia.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3