Role of bicarbonate in biliary excretion of diisothiocyanostilbene disulfonate

Author:

Anwer M. S.1,Nolan K.1,Hardison W. G.1

Affiliation:

1. Department of Veterinary Medicine, Tufts University School ofVeterinary Medicine, N. Grafton, Massachusetts 01536.

Abstract

Hepatic transport of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) was studied in isolated perfused rat livers and in isolated rat hepatocytes to determine if DIDS-induced decrease in biliary HCO3- excretion is due to a DIDS-HCO3- exchange and/or due to inhibition of Cl(-)-HCO3- exchange. In isolated perfused rat livers, DIDS reversibly decreased biliary HCO3- concentration and excretion. The changes in biliary HCO3- concentration were inversely related to biliary DIDS concentration. DIDS was concentrated in bile, indicating active hepatic transport. Replacement of perfusate HCO3- with equimolar dimethyloxazolidinedione (DMO) or tricine decreased biliary excretion, but not hepatic uptake, of DIDS. Biliary excretion of DIDS was also associated with a decrease in bile pH, and this decrease in pH was greater in the presence of HCO3-. HCO3-, but not DMO or tricine, stimulated DIDS efflux from preloaded hepatocytes. DIDS efflux was also temperature dependent and increased with increasing extracellular pH. Collectively, these results are consistent with the presence of a DIDS-HCO3- (OH-) exchange mechanism at the canalicular membrane. HCO3(-)-dependent Cl- uptake in hepatocytes was competitively inhibited by DIDS (Ki = 0.24 mM), confirming the presence of DIDS-inhibitable Cl(-)-HCO3- exchange. However, the ability of DIDS to decrease biliary HCO3- excretion persisted when perfusate Cl- was replaced by isethionate. Moreover, biliary HCO3- concentration returned to base line despite the presence of 2-6 mM DIDS in bile. Thus it seems unlikely that the inhibition of Cl(-)-HCO3- exchange by DIDS is a major mechanism of inhibition of HCO3- excretion. We, therefore, conclude that a DIDS-HCO3- (OH-) exchange at the canalicular membrane is the most likely explanation for the observed decrease in biliary HCO3- excretion.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3