Modulation of secretin release by neuropeptides in secretin-producing cells

Author:

Chang Cecilia H.1,Chey William Y.1,Erway Brian1,Coy David H.2,Chang Ta-Min1

Affiliation:

1. The Konar Center for Digestive and Liver Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; and

2. Tulane University, New Orleans, Louisiana 70112

Abstract

Nerve fibers containing bombesin (BB)/gastrin-releasing polypeptide (GRP), pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), or galanin are known to innervate the mucosa of the upper small intestine. Both BB/GRP and PACAP have been shown to elicit secretin secretion in vivo. We studied whether the above-mentioned neuropeptides can act directly on secretin-producing cells, including the murine neuroendocrine cell line STC-1 and a secretin cell-enriched preparation isolated from rat upper small intestinal mucosa. Secretin release from both cell types was stimulated by various agents known to elicit secretin release and by the neuropeptides BB, GRP, and PACAP, suggesting a comparable response between the two cell preparations. The effects of neuropeptides were further studied in STC-1 cells. BB, GRP, and PACAP stimulated secretin release time and concentration dependently. VIP also stimulated secretin release concentration dependently. Stimulation by BB/GRP or PACAP was accompanied by elevation of inositol-1,4,5-trisphosphate (IP3) or cAMP, respectively. The stimulatory effect of PACAP on secretin release was synergistically enhanced by BB without any synergistic increase in IP3 or cAMP production, suggesting cross talk between different signal transduction pathways downstream of the production of these two second messengers. The L-type Ca2+ channel blocker diltiazem (10 μM) and the Ca2+ chelator EGTA (1 mM) significantly inhibited BB-stimulated secretin release by 64% and 59%, respectively, and inhibited PACAP-stimulated release by 75% and 55%, respectively. The protein kinase A-specific inhibitor Rp-cAMPS (100 μM) also inhibited both BB- and PACAP-stimulated secretin release by 30% and 62%, respectively. Galanin inhibited BB- and PACAP-stimulated secretin release and production of second messengers in a concentration-dependent and pertussis toxin-sensitive manner. These results suggested that the neuropeptides BB/GRP, PACAP, VIP, and galanin can modulate secretin release in secretin-producing cells and that STC-1 cells can serve as a useful model for studying the cellular mechanism of secretin secretion elicited by luminal secretagogues and neuropeptides.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3