Calcium signaling in cultured human and rat duodenal enterocytes

Author:

Chew Catherine S.12,Säfsten Bengt1,Flemström Gunnar1

Affiliation:

1. Department of Physiology, Uppsala University, SE-751 23 Uppsala, Sweden; and

2. Institute for Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 31902

Abstract

Vagal stimuli increase duodenal mucosal[Formula: see text] secretion and may provide anticipatory protection against acid injury, but duodenal enterocyte (duodenocyte) responses and cholinoceptor selectivity have not been defined. We therefore developed a stable primary culture model of duodenocytes from rats and humans. Brief digestion of scraped rat duodenal mucosa or human biopsies with collagenase/dispase yielded cells that attached to the extracellular matrix Matrigel within a few hours of plating. Columnar cells with villus enterocyte morphology that exhibited spontaneous active movement were evident between 1 and 3 days of culture. Rat duodenocytes loaded with fura 2 responded to carbachol with a transient increase in intracellular calcium concentration ([Ca2+]i), with an apparent EC50 of ∼3 μM. In a first type of signaling pattern, [Ca2+]ireturned to basal or near basal values within 3–5 min. In a second type, observed in cells with enlarged vacuoles characteristic of crypt cell morphology, the initial transient increase was followed by rhythmic oscillations. Human duodenocytes responded with a more sustained increase in [Ca2+]i, and oscillations were not observed. Rat as well as human duodenocytes also responded to CCK-octapeptide but not to vasoactive intestinal polypeptide. Equimolar concentrations (100 nM) of the subtype-independent muscarinic antagonist atropine and the M3 antagonist 4-diphenylacetoxy- N-methylpiperidine methiodide prevented the response to 10 μM carbachol, whereas the M1 antagonist pirenzepine and the M2 antagonists methoctramine and AF-DX 116BS had no effect at similar concentrations. Responses in rat and human duodenocytes were similar. A new agonist-sensitive primary culture model for rat and human duodenocytes has thus been established and the presence of enterocyte CCK and muscarinic M3 receptors demonstrated.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3